Displaying items by tag: Eco friendly camp
What about science?
Science Summer Camps and programs let students get close to areas of scientific inquiry in a way that isn't always possible in the classroom.
Does science come to mind when you think about summer camp? All of our campers know It should,
You might be surprised to learn that hundreds of camps and programs across the United States offer science as part of their summer-fun lineup—and in support of an increasing committment to supporting and strengthening science, technology, engineering, and math (STEM) skills.
Like all other summer camps, science-related summer programs are an American right of passage: hours of fun with friends, away from parents, no textbooks, no tests, no homework. The difference is that a summer science camp also offers students of all ages an opportunity to reallyexplore science in all its hands-on, fun, goopy, messy, glory, without the burden of needing to know the 'right' answer for Wednesday's quiz.
Science camps come in a wide variety of formats. There are day and residential camps focusing on every aspect of science and engineering you can imagine: robotics, chemistry, the environment, zoo animals, architecture, space science, and dinosaur fossils, to name just a few! These programs use fun and play to help teach and introduce science and engineering concepts. For example, a week-long day camp focusing on amusement park physics might have kids exploring centripetal force, and kinetic and potential energy, while riding real amusement park rides and building their own mini versions from LEGO blocks, buckets, string, or foam tubing. When done right, science camp is a combination that is super fun and engaging, and fosters learning and creativity.
Why attend a science camp?
Science camps fall under the umbrella of what is commonly called informal science learning. Recent studies show that informal science learning is one of the most effective ways people learn science. Students who participate in these types of activities are more likely to have an above-average understanding of science, and pursue science-related careers.
For younger children, science camp can introduce them to many different areas of science and give them the confidence and inspiration to embrace science at school. Older students, who are already interested in science, may use science camp as a way to explore what a specific science-related career would be like, or to meet mentors and role models in the field. Such connections could lead to other opportunities, like internships, or become a featured event on a resume or college application.
For all students, science camp can be the opportunity to explore a branch of science that might not be available in their school, like marine biology or aeronautics, or to cover a topic more in depth than they'd otherwise be able to.
How do I choose a summer science camp or program?
Through innovative hands-on activities and demonstrations, students can explore a range of scientific fundamentals and areas of science at summer camp, from chemistry and microbiology to aeronautics, electronics, and computer science.
Choosing a summer science camp is similar to choosing any other type of camp. You have your usual considerations about cost, distance from home, and amount of time, along with the question of finding the "best fit." For science camps, the "best fit" often boils down to figuring out what science topic(s) are of interest and finding a camp that does a good job of implementing those.
Figure out what science topics are of interest.
- Older children might already have a clear preference. Perhaps they're keen on video games and would love to go to a camp where they could design and program one. Or maybe they're into hiking and wildlife and are looking for an outdoor experience as a junior park ranger. Their hobbies and reading choices are often a good indicator of their interests.
- Younger children might not yet have a clear preference. If they don't, then look for camps that offer a wide variety of science and engineering topics for them to explore. For example, a day camp that has a new science theme every week, or a balance camp that has a blend of science, arts, and physical activities.
Determine the level of "academics" you want.
- Science camp should always be fun. A good science camp will allow students plenty of time to do hands-on exploration. This is part of the informal component. How much additional formal education a science camp has varies. Programs that incorporate lectures from distinguished professors or professionals might be appropriate, inspirational, and informative for older students who are interested in a specific field. Younger students are more likely to benefit from group activities, projects, and interactions with informed camp counselors rather than lectures.
Search for camps that fit your needs.
Once you know the range of science topics you'd like the camp to cover, the level of academics, the general geographic location, and the time and money commitments that are right for your family, you're ready to start searching.Cogito and The Connectory are two great national science camp directories and a fantastic place to begin your search.
-
Local parenting magazines and websites might also have lists of camps in your area.
-
Science museums, zoos, aquariums, planetariums, and state or national parks are also great resources, as they often run their own camps and/or link to science camps with similar interests.
-
Many colleges and universities also run summer science camps. A simple search for "summer science camp" on a local academic institution's website is a good way to find these.
-
Simple web browser searches can also turn up a wealth of information.
Make sure you choose a camp or program with qualified counselors.
Once you've located some camps that meet your search parameters, you should do some legwork to make sure that the counselors—the people the campers interact with all day long—are knowledgeable about science. For example, a knowledgeable counselor can transform a simple day of splashing in the creek into an adventurous treasure hunt for local plants and animals, andincorporate substantive and engaging lessons about food chains and the interconnectivity of different habitats.
Ask the camp or program director questions aimed at making sure the counselors have had ample formal training in the subject area(s) and excel at explaining the science in an engaging, age-appropriate manner. Ask the camp or program director questions aimed at making sure the counselors have had ample formal training in the subject area(s) and excel at explaining the science in an engaging, age-appropriate manner.
Register Early!
- While summer might seem a long way off, it's time to start thinking about summer camps. Many top camps offer "early bird" registration discounts in the January-March timeframe (check camp websites for specific camp deadlines).
Find Out More
- National Research Council of the National Academies. (2009). Learning Science in Informal Environments: People, Places, and Pursuits. Retrieved December 1, 2010, from http://www.nap.edu/openbook.php?record_id=12190&page=1#
- Folk, John H., and Dierking, Lynn D. (2010, November-December). The 95 Percent Solution: School is not where most Americans learn most of their science. American Scientist. Volume 98, Number 6, Page: 486. Page: 486
- Summer Camp Advice- Empowering Parents to Make Informed Decisions
supports the implementation of Wisconsin’s Plan for Environmental Literacy and Sustainable
Communities . This plan is the latest in a long line of environmental education initiatives in the
state . Beginning with the Conservation Movement in the late 1800s and early 1900s through
the Environmental Movement in the 1960s and 70s and on to today, residents of Wisconsin
have played a key role in shaping the knowledge, skills, and attitudes of individuals, groups,
and organizations with respect to environmental issues at the national, regional, and local
levels . As a new century has just begun, this plan provides a pathway for all of us to build
upon this prior work and move forward in developing an environmentally literate society
comprised of sustainable communities .
permalink=”http://www.swiftnaturecamp.com/blog”>
Sustainable Communities (referred to in this document
as the “Plan”) serves as a strategic plan for achieving
the vision of environmentally literate and sustainable
communities across Wisconsin . The Plan is meant to
build capacity, awareness, and support for environmental
literacy and sustainability at home, work, school, and
play . It encourages funding, research, and education for
environmental literacy and sustainability and it supports
Wisconsin’s Plan to Advance Education for Environmental
Literacy and Sustainability in PK-12 Schools.
This Plan was developed through input from diverse
representatives from around the state, all of whom—
like many before them—are attentive to the health and
well-being of Wisconsin’s people, the stewardship of our
natural resources, the sustainability of our communities,
and to leaving a positive legacy for the future . Wisconsin
people value the state’s natural resources and the functions
these resources serve at home, work, school, and play .
This commitment to protecting and conserving valued
resources can and does lead to sustainable communities
that enjoy a healthy environment, a prosperous economy,
and a vibrant civic life . The purpose of this Plan, therefore,
is to provide a roadmap, a course of action, individuals,
organizations, businesses and governments must
take to attain environmental literacy and sustainable
communities . By providing a shared vision, mission,
and goals, encouraging the use of common language,
and promoting collaborative efforts, the Plan offers the
opportunity for extraordinary impact and change .
The Wisconsin Environmental Education Board (WEEB) is charged with
leadership for environmental education for all people in the state and is required
to develop a strategic plan every ten years . This Plan was born from that
demand . WEEB’s previous strategic plan, A Plan for Advancing Environmental
Education in Wisconsin: EE2010, had seven goals that were based on the central
purposes of providing positive leadership; developing local leaders; developing
and implementing curricula; and furthering professional development .
An assessment provided insight into this plan’s successes and what remains to be
done . Major successes include:
• The creation of a website, EEinWisconsin .org, which acts as a tool for
statewide communication and a clearinghouse for both formal and non-
formal environmental education in Wisconsin .
• The WEEB’s use of the goals in its grants program .
• The initiation of research in environmental literacy and sustainability .
• The establishment of Wisconsin Environmental Education Foundation,
which is leading the way toward more sustainable funding for
environmental education .
The assessment found more work needs to be done to support and enhance
non-formal and non-traditional environmental education . The Plan addresses
this need and sets new goals .
Collaboration with Other Efforts
considers educational needs and responses for the whole community and
supports sustainable practices at home, work, school, and play . The Plan is
coordinated with and supported by two additional statewide efforts to advance
the implementation of the Plan’s goals and the integration of sustainability . They
are:
Wisconsin’s Plan to Advance Education for Environmental Literacy and
Sustainability in PK-12 Schools addresses multiple aspects related directly
to pre-kindergarten through high school student learning to ensure every
student graduates environmentally literate . (NCLIwisconsin .org)
Cultivating Education for Sustainability in Wisconsin builds capacity
and support for schools and communities to focus student learning on
sustainability . It provides recommendations for resources and services to
implement education for sustainability in schools . (www .uwsp .edu/wcee/efs)
2 Wisconsin’s Plan for Environmentally Literate and Sustainable Communities
Benefits of a State Plan
• Provide a common vision and set of goals for people in Wisconsin to work
toward .
• Guide decision-making, policy making and priority setting .
• Serve as justification for and purpose behind creating or continuing
programs, tools and resources .
• Set priorities for development and delivery of educational programs,
business plans, and community efforts .
• Rationale and guidance for funding and research efforts .
How to Use the Plan
Wisconsin’s Plan for Environmentally Literate and Sustainable Communities is
not an organization, but rather a document that serves as the state strategic plan
requiring partnerships and collaboration . It is designed to serve as reference
material for individuals, businesses, and communities . Those who influence
environmental literacy and sustainability in Wisconsin such as community
leaders, traditional and non-formal educators and administrators, resources
developers and providers, policy makers, funders and researchers will find the
Plan useful as a guide in setting priorities and making decisions . Over the course
of the next decade, the Plan’s desired outcomes will be central to environmental
literacy and sustainability efforts across the state . As Wisconsin people work
toward achieving the four main outcomes of the Plan, this document can help
guide attitudes, planning, actions, and endeavors .
If you did...What have you done about it.
If not there is still time to save nearly 40% of the turtles that are threatened .
permalink=”http://www.swiftnaturecamp.com/blog”>
Why Turtles, and Why Now?
Throughout the year, we will be raising awareness of the issues surrounding turtles through press releases, newsletters, photo contests, and related events. We believe that citizens, natural resource managers, scientists, and the pet and food and related industries can work together to address issues and to help ensure long-term survival of turtle species and populations.
Threats to US Turtles
- habitat loss and degradation
- overharvest of wild turtles for food, traditional medicines, and pets
- mortality from roads, agricultural machinery, fishing bycatch, and predators
- invasive exotic species and diseases
- loss of unique genetic makeup due to hybridization
- climate change
This email address is being protected from spambots. You need JavaScript enabled to view it. for our monthly newsletters, containing:
- A downloadable turtle photo calendar for each month, including a photo contest – your photo could be in the calendar!
- Information about turtle conservation efforts and groups, and how you can help
- Interviews with turtle experts, and answers to selected questions that YOU send us!
- Information on how you can help spread the word about turtles
- Educational materials
- Turtle art, poetry, and cultural information
- ... and much, MUCH, more!
- At Swift Nature Camp you can learn more with hands on studies with turtles.
Greetings Environmental Educator!
I'm writing with great news for the environmental education community!
Representative Taylor (Monona) and Senator Larson (Milwaukee) have secured over 32 co-sponsors from both legislative houses for the Wisconsin Children's Outdoor Bill of Rights.
Next steps and how you can help:
On January 5th, Representatives Taylor and Larson will publicly announce the bill and ask for the joint assembly to schedule a vote. With a great show of support from the EE community, we can ensure this bill's success. Here's what you can do:
1. Sign on to support! - show your support of the Children's Outdoor Bill of Rights and keep up to date on the bill's progress.
2. Get out your art smocks - encourage children's groups to create artwork that expresses how and why spending time outdoors is of value.
3. Come to the January 5th press conference at the state capitol - registration details to be announced.
To find out more about this initiative, including the official language in the bill, if your legislator is a co-sponsor, or who fellow supporters are, visit the EEinWisconsin.org website.
Please pass along this exciting news to colleagues!
For questions or comments, please contact:
Betsy Parker
Wisconsin Association for Environmental Education - Networking & Advocacy Chair
(608) 209-2909This email address is being protected from spambots. You need JavaScript enabled to view it.
Jennifer Giegerich
Wisconsin League of Conservation Voters - Legislative Director
(608) 661-0845This email address is being protected from spambots. You need JavaScript enabled to view it.
permalink=”http://www.swiftnaturecamp.com/blog”>
Eurasian Water Milfoil
Eurasian milfoil first arrived in Wisconsin in the 1960's. During the 1980's, it began to move from southern Wisconsin to lakes and waterways in the northern half of the state. This migration took place mainly by boaters not removing fragments from their boats as they went from lake to lake. In Minong Wisconsin. the milfoil increase has happened over the last 10 years or so. Today, many lakes in the region are trying many ways to eliminate this nonnative invasive species.
Eurasian Water Milfoil (Myriophyllum spicatum)
DESCRIPTION: Eurasian water milfoil is a submersed aquatic plant native to Europe, Asia, and northern Africa. It is the only non-native milfoil in Wisconsin. Like most of the native milfoils, the Eurasian variety has slender stems whorled by submersed feathery leaves. The stems of Eurasian water milfoil tend to be limp, and may show a pinkish-red color. The 4-petaled, pink flowers of Eurasian water milfoil are located on a spike that rises a few inches out of the water. The leaves are typically divided into 12 or more pairs of threadlike leaflets. The most common native water milfoils tend to have whitish or brownish stems, and leaves that divide into fewer than 10 pairs of leaflets. Coontail is often mistaken for the milfoils, but its leaves are not feathery, but rather branch once or twice with several small teeth along the leaves. Bladderworts can also be mistaken for Eurasian watermilfoil, but they are easily distinguished by the presence of many small bladders on the leaves, which serve to trap and digest small aquatic insects.
|
DISTRIBUTION AND HABITAT: Eurasian milfoil first arrived in Wisconsin in the 1960's. During the 1980's, it began to move from several counties in southern Wisconsin to lakes and waterways in the northern half of the state. As of 1993, Eurasian milfoil was common in 39 Wisconsin counties (54%) and at least 75 of its lakes, including shallow bays in Lakes Michigan and Superior and Mississippi River pools.
Eurasian water milfoil grows best in fertile, fine-textured, inorganic sediments. In less productive lakes, it is restricted to areas of nutrient-rich sediments. It has a history of becoming dominant in eutrophic, nutrient-rich lakes, although this pattern is not universal. It is an opportunistic species that prefers highly disturbed lake beds, lakes receiving nitrogen and phosphorous-laden runoff, and heavily used lakes. Optimal growth occurs in alkaline systems with a high concentration of dissolved inorganic carbon. High water temperatures promote multiple periods of flowering and fragmentation.
LIFE HISTORY AND EFFECTS OF INVASION: Unlike many other plants, Eurasian water milfoil does not rely on seed for reproduction. Its seeds germinate poorly under natural conditions. It reproduces vegetatively by fragmentation, allowing it to disperse over long distances. The plant produces fragments after fruiting once or twice during the summer. These shoots may then be carried downstream by water currents or inadvertently picked up by boaters. Milfoil is readily dispersed by boats, motors, trailers, bilges, live wells, or bait buckets, and can stay alive for weeks if kept moist.
Once established in an aquatic community, milfoil reproduces from shoot fragments and stolons (runners that creep along the lake bed). As an opportunistic species, Eurasian water milfoil is adapted for rapid growth early in spring. Stolons, lower stems, and roots persist over winter and store the carbohydrates that help milfoil claim the water column early in spring, photosynthesize, divide, and form a dense leaf canopy that shades out native aquatic plants. Its ability to spread rapidly by fragmentation and effectively block out sunlight needed for native plant growth often results in monotypic stands. Monotypic stands of Eurasian milfoil provide only a single habitat, and threaten the integrity of aquatic communities in a number of ways; for example, dense stands disrupt predator-prey relationships by fencing out larger fish, and reducing the number of nutrient-rich native plants available for waterfowl.
Dense stands of Eurasian water milfoil also inhibit recreational uses like swimming, boating, and fishing. Some stands have been dense enough to obstruct industrial and power generation water intakes. The visual impact that greets the lake user on milfoil-dominated lakes is the flat yellow-green of matted vegetation, often prompting the perception that the lake is "infested" or "dead". Cycling of nutrients from sediments to the water column by Eurasian water milfoil may lead to deteriorating water quality and algae blooms of infested lakes.
CONTROLLING EURASIAN WATER MILFOIL: Preventing a milfoil invasion involves various efforts. Public awareness of the necessity to remove weed fragments at boat landings, a commitment to protect native plant beds from speed boaters and indiscriminate plant control that disturbs these beds, and a watershed management program to keep nutrients from reaching lakes and stimulating milfoil colonies--all are necessary to prevent the spread of milfoil.
Monitoring and prevention are the most important steps for keeping Eurasian water milfoil under control. A sound precautionary measure is to check all equipment used in infested waters and remove all aquatic vegetation upon leaving the lake or river. All equipment, including boats, motors, trailers, and fishing/diving equipment, should be free of aquatic plants.
Lake managers and lakeshore owners should check for new colonies and control them before they spread. The plants can be hand pulled or raked. It is imperative that all fragments be removed from the water and the shore. Plant fragments can be used in upland areas as a garden mulch.
DNR permits are required for chemical treatments, bottom screening, buoy/barrier placement, and mechanized removal.
Mechanical Control: Mechanical cutters and harvesters are a common method for controlling Eurasian water milfoil in Wisconsin. While harvesting may clear out beaches and boat landings by breaking up the milfoil canopy, the method is not selective, removing beneficial aquatic vegetation as well. These machines also create shoot fragments, which contributes to milfoil dispersal. Harvesting should be used only after colonies have become widespread, and harvesters should be used offshore where they have room to turn around. Hand cutters work best inshore, where they complement hand pulling and bottom screening. A diver-operated suction dredge can be used to vacuum up weeds, but the technique can destroy nearby native plants and temporarily raise water turbidity.
Hand pulling is the preferred control method for colonies of under 0.75 acres or fewer than 100 plants. The process can be highly effective at selectively removing Eurasian water milfoil if done carefully; special care must be taken to collect all roots and plant fragments during removal. Hand pulling is a time-consuming process.
Bottom screening can be used for small-scale and localized infestations on sites with little boat traffic, but will kill native vegetation as well. The bottom screens are anchored firmly against the lake bed to kill grown shoots and prevent new sprouts, but screens must be removed each fall to clean off sediment that encourages rooting. Buoys can mark identified colonies and warn boaters to stay away. Bottom screens may exacerbate a milfoil population once removed, because Eurasian water milfoil will readily re-colonize the bare sediment.
Whenever possible, milfoil control sites should become customized management zones. For example, milfoil removal by harvesting can be followed by planting native plants to stabilize sediments against wave action, build nurseries for fry, attract waterfowl, and compete against new milfoil invasions.
Chemical Control: Herbicide treatments are commonly used to control Eurasian water milfoil. While no herbicide treatment is completely selective for milfoil, timing treatment early in the spring as soon as water warms helps limit unintentional harm to native plants. Herbicide treatments are most effective combined with vigilant post-treatment monitoring and non-chemical controls such as hand-pulling milfoil as it returns. When used carelessly, chemical treatments can be disruptive to aquatic ecosystems, not selective in the vegetation affected, and can cause more harm than good.
Biological Control: Eurhychiopsis lecontei, an herbivorous weevil native to North America, has been found to feed on Eurasian water milfoil. Adult weevils feed on the stems and leaves, and females lay their eggs on the apical meristem (top-growing tip); larvae bore into stems and cause extensive damage to plant tissue before pupating and emerging from the stem. Three generations of weevils hatch each summer, with females laying up to two eggs per day. It is believed that these insects are causing substantial decline in some milfoil populations. Because this weevil prefers Eurasian water milfoil, other native aquatic plant species, including northern water milfoil, are not at risk from the weevil's introduction. Twelve Wisconsin lakes are currently part of a two-year DNR project studying the weevil's effectiveness in curbing Eurasian water milfoil populations. The fungus Mycoleptidiscus terrestris is also under extensive research.
Simply because they are active only at night and difficult to observe and understand, bats rank among our planet’s most misunderstood and intensely persecuted mammals. Those that eat insects are primary predators of the vast numbers that fly at night, including ones that cost farmers and foresters billions of dollars in losses annually. As such bats decline, demands for dangerous pesticides grow, as does the cost of growing crops like rice, corn and cotton.
Fruit and nectar-eating bats are equally important in maintaining whole ecosystems of plant life. In fact, their seed dispersal and pollination services are crucial to the regeneration of rain forests which are the lungs and rain makers of our planet.
Many of the plants which depend on such bats are additionally of great economic value, their products ranging from timber and tequila to fruits, spices, nuts and even natural pesticides.
Scary media stories notwithstanding, bats are remarkably safe allies. Where I live, in Austin, Texas, 1.5 million bats live in crevices beneath a single downtown bridge. When they began moving in, public health officials warned that they were diseased and dangerous--potential attackers of humans. Yet, through Bat Conservation International, we educated people to simply not handle them, and 30 years later, not a single person has been attacked or contracted a disease. Fear has been replaced by love as these bats catch 15 metric tons of insects nightly and attract 12 million tourist dollars each summer.
It is now well demonstrated that people and bats can share even our cities at great mutual benefit. As we will show through varied Year of the Bat activities, bats are much more than essential. They’re incredibly fascinating, delightfully likeable masters of our night skies.
Statement by Dr. Merlin Tuttle
Honorary Ambassador
Mom Was Right: Go Outside
- May 25, 2012, 11:26 a.m. ET
- By JONAH LEHRER
Humans are quickly becoming an indoor species.
In part, this is a byproduct of urbanization, as most people now live in big cities. Our increasing reliance on technology is also driving the trend, with a recent study concluding that American children between the ages of 8 and 18 currently spend more than four hours a day interacting with technology.
As a result, there's no longer time for nature: From 2006 to 2010, the percentage of young children regularly engaging in outdoor recreation fell by roughly 15 percentage points.
This shift is occurring even as scientists outline the mental benefits of spending time in natural settings. According to the latest research, untamed landscapes have a restorative effect, calming our frazzled nerves and refreshing the tired cortex. After a brief exposure to the outdoors, people are more creative, happier and better able to focus. If there were a pill that delivered these same results, we'd all be popping it.
Consider a forthcoming paper by psychologist Ruth Ann Atchley and her colleagues at the University of Kansas. To collect their data, the researchers partnered with the nonprofit Outward Bound, which takes people on extended expeditions into nature. To measure the mental benefits of hiking in the middle of nowhere, Dr. Atchley gave 60 backpackers a standard test of creativity before they hit the trail. She gave the same test to a different group of hikers four days into their journey.
The results were surprising: The hikers in the midst of nature showed a nearly 50% increase in performance on the test of creativity, and the effect held across all age groups.
"There's a growing advantage over time to being in nature," says Dr. Atchley. "We think that it peaks after about three days of really getting away, turning off the cellphone. It's when you have an extended period of time surrounded by that softly fascinating environment that you start seeing all kinds of positive effects in how your mind works."
This latest study builds on a growing body of evidence demonstrating the cognitive benefits of nature. Although many of us find the outdoors alienating and uncomfortable—the bugs, the bigger critters, the lack of climate control—the brain reacts to natural settings by, essentially, sighing in relief.
In 2009, a team of psychologists led by Marc Berman at the University of Michigan outfitted undergraduates with GPS receivers. Some of the students took a stroll in an arboretum, while others walked around the busy streets of downtown Ann Arbor.
The subjects were then run through a battery of psychological tests. People who had walked through the natural setting were in a better mood and scored significantly higher on tests of attention and short-term memory, which involved repeating a series of numbers backward. In fact, just glancing at a photograph of nature led to measurable improvements, at least when compared with pictures of cities.
This also helps to explain an effect on children with attention-deficit disorder. Several studies show that, when surrounded by trees and animals, these children are less likely to have behavioral problems and are better able to focus on a particular task.
Scientists have found that even a relatively paltry patch of nature can confer cognitive benefits. In the late 1990s, Frances Kuo, director of the Landscape and Human Health Laboratory at the University of Illinois, began interviewing female residents in the Robert Taylor Homes, a massive housing project on the South Side of Chicago.
Dr. Kuo and her colleagues compared women who were randomly assigned to various apartments. Some had a view of nothing but concrete sprawl, the blacktop of parking lots and basketball courts. Others looked out on grassy courtyards filled with trees and flower beds. Dr. Kuo then measured the two groups on a variety of tasks, from basic tests of attention to surveys that looked at how the women were handling major life challenges. She found that living in an apartment with a view of greenery led to significant improvements in every category.
Cities are here to stay; so are smartphones. What this research suggests, however, is that we need to make time to escape from everyone else, to explore those parts of the world that weren't designed for us. It's when we are lost in the wild that the mind is finally at home.
permalink=”http://www.swiftnaturecamp.com/blog”>
Now is a good time to show your support for this effort - here's how:
1. Attend Lobby Day - March 16th, 2011
The Wisconsin League of Conservation Voters (WLCV) has declared the Wisconsin Children's Outdoor Bill of Rights a legislative priority for 2011-12. You can show your support and speak directly with legislators about this issue at WLCV's Lobby Day on March 16th. For more information and to register for this exciting and empowering day, visit: Lobby Day 2011.
You are also invited to attend:
WAEE's Lobby Day Breakfast
Immediately preceding WLCV's Lobby Day
9-10am March 16th, 2011
Monona Terrace Room M/Q
Madison
RSVP to WAEE Advocacy Chair, This email address is being protected from spambots. You need JavaScript enabled to view it.
There's more you can do:
2. Sign on as a Children's Outdoor Bill of Rights Supporter.
3. Contact Your Legislator to let them know EE is important in Wisconsin and mention the Children's Outdoor Bill of Rights.
4. Forward this information to your colleagues.
What is the Children's Outdoor Bill of Rights?
Children who have the opportunity to explore, learn and play in Wisconsin's outdoors are more likely to be healthy, to do better in school, to experience improved creativity and concentration, and to discover the rewards of outdoor stewardship. To that end, we believe the children of Wisconsin have the right to experience each of the following (draft) activities during their youth:
Every Wisconsin child has the right to:
• Follow a trail, whether by hiking or biking.
• Visit a working farm.
• Eat healthy and sustainable food.
• Splash, swim and play in a clean Wisconsin lake or river.
• Catch and release frogs, fireflies, and insects.
• Tap a maple tree.
• Explore wild places close to home.
• Eat a fish they catch.
• Discover Wisconsin’s diverse wilderness – prairies, forests, wetlands, and beaches.
• Share a hunting experience with a great mentor or teacher.
Why is it important to get involved?
In order to pass this resolution, we need your help! Over a thousand bills and resolutions come across our legislators desks each year but only about 30% are passed. Those that pass do so thanks to people like you. Legislators tell us they are significantly more likely to consider a bill or resolution if they've heard about it from their constituents.
Is the timing right?
Now is a great time speak up for EE: the Children's Outdoor Bill of Rights is a non-budgetary resolution and may be just what legislators are looking for to stand behind (rather than the politically charged "budget repair" bill). However, in order to be heard above the current turmoil and get legislators' support, it's critical the EE community comes forward to declare "EE in our state is important".
Questions?
Need more information or want to learn more about how this venture got started and where it can take us? Visit the Wisconsin Children's Outdoor Bill of Rightswebsite or contact us - we're happy to discuss this exciting project with you:
WAEE
Betsy Parker, Networking & Advocacy Chair
This email address is being protected from spambots. You need JavaScript enabled to view it.
(608) 209.2909
As we near Earth Day 2012 it is important that
we all realize that the planting of 1 tree can make a difference.
Read more about How trees change our life
The information provided is in reference to urban forests, but these benefits and values also apply to rural forests.
Canopy, or tree canopy, is a term used to describe the leaves and branches of a tree or group of trees. In an urban forest, tree canopy is important to the potential benefits the forest may provide. In general, the more area it covers and the denser the canopy, the more benefits the trees can provide. Although one tree is better than none, 100 are better still. Whether the benefits are from one tree or many trees, they are all still real and most can be quantified in some way. Often, forest benefits are divided into three categories: social, economic, and ecologic. It is difficult to divide the benefits that the urban forest canopy provides into these categories because so many benefits fall into more than one.
Social Benefits
Just as with a rural forest, an urban forest provides many benefits. Numerous studies have been done about the social
and psychological benefits of “green” in urban environments. The findings of the studies make a strong case for the
importance of urban forests. Urban public housing residents who lived in buildings without trees and grass nearby were
asked about how they cope with major life issues. They reported more procrastination and assessed their issues as more
severe than residents with green nearby.
A study done with children with Attention Deficit Disorder (ADD) found that children with ADD were better able to focus
and concentrate after playing in natural, green settings, than in settings where concrete was predominant.
Apartment buildings with high levels of greenery have been shown to have approximately half the number of crimes
than those with little or no greenery. The results proved true for both property crimes and violent crimes. A similar study
found that residents living in areas without nearby nature reported more aggression and violence than those living with
nearby green. In addition to these specific studies, access to nature also provides humans with other social benefits.
Parks and other green spaces provide a space for people to play, walk, jog, birdwatch, or just sit quietly. These activities
are good for our physical health in a society that is increasingly sedentary. It is also good for our mental health by
providing a place to unwind. Trees also reduce noise levels.
Economic Benefits
The economic benefits of urban forests are increasingly being documented. Economics often becomes the language
used when it comes to urban forest management. Budgets of municipalities must cover an array of services, and the
benefits of an urban ecosystem must often be proven to secure funding. In a study that considered the costs and
benefits of municipal forests in five U.S. cities, the researchers found that for every dollar spent on trees, the benefits
returned were worth from $1.37 to $3.09. A little math tells us this is clearly a good investment.
Trees save money through reduced energy costs. Cities create what is referred to as a heat island. The concrete, asphalt,
buildings, and other surfaces absorb and hold heat from the sun. During hot summer days, cities can be five to nine
degrees warmer than surrounding areas. Shading, evapotranspiration, and wind speed reduction provided by trees help
conserve energy in buildings. A study conducted in Minneapolis, Minnesota, showed that trees placed in the proper
location can reduce total heating and cooling costs by eight percent.
Homeowners not only reduce costs of heating and cooling their homes, but increase the value of their property by
planting trees. Research suggests that property value can increase three to seven percent when trees are present. Trees
also make homes and neighborhoods more desirable places to live. One economic benefit that urban trees can provide,
but often don’t, is one based on products. Municipalities and tree services across the country have come up with ways
to use the wood that is cut from an urban forest. Products range from specialty furniture, to musical instruments, to
lumber for park shelters, to artwork. The income from selling products from the wood of trees being removed could be used to defray the cost associated with the removal, making trees an even better investment.
Trees and Climate Change
The information about how trees impact climate change is taken from the National Arbor Day website
http://www.arborday.org/globalwarming/treesHelp.cfm, and the American Forest Foundation website
www.americanforests.org/resources/climatechange/
Deciduous trees, planted on the west, east and south sides, will keep your house cool in the summer and let the sun
warm your home in the winter, reducing energy use.
Just three trees, properly placed around a house, can save up to 30% of energy use.
Trees or shrubs planted to shade air conditioners help cool a building more efficiently, using less electricity. A unit
operating in the shade uses as much as 10% less electricity than the same one operating in the sun.
Neighborhoods with well-shaded streets can be up to 6–10° F cooler than neighborhoods without street trees, reducing
the heat-island effect, and reducing energy needs.
Shaded parking lots keep automobiles cooler, reducing emissions from fuel tanks and engines, and helping reduce the
heat-island effect in communities.
Trees absorb carbon dioxide (CO2), the primary gas causing global climate change. Trees retain the carbon (C) from the
CO2 molecule and release oxygen (O2) into the atmosphere. The retained carbon makes up half the dry weight of a tree.
Forests are the world's second largest carbon reservoirs (oceans are the largest). Unlike oceans, however, we can grow
new forests. One acre of forestland will sequester between 150 - 200 tons of CO2 in its first 40 years.